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1 September 4, 2019

1.1 Statements

Definition. A statement (or proposition) is an assertion that its true or false
(but not both).

Ex
P = “Ringo Starr is alive”
Q = “The earth is flat”

Definition. The truth value of a statmeent is T (if true) and F (if false)

Definition. The negation of a statement P is the statement “P is false” (∼P)

Ex
∼P = “Ringo Starr is dead”
∼Q = “The earth is not flat”

Remark. ∼(∼P) = P

Definition. The conjunction of two statements P, Q is the statement “P and
Q” (P ∧ Q)
i.e. The truth value of P∧Q is T if P is T and Q is T, and F otherwise.

Proposition. P ∧(∼P) = F

P ∼P P ∧(∼P)
T F F
F T F

Definition (Disjunction). P or Q (P ∨ Q) is F if P is F and Q is F, and T
otherwise. “or” in math is always inclusive.

Proposition. (P ∧Q) ∨ (∼ P ∨ ∼ Q) = T

P Q P ∧ Q ∼P ∨ ∼ Q (P ∧ Q) ∨ ( ∼P ∨ ∼ Q )
T T T F T
T F F T T
F T F T T
F F F T T

1.2 Conditionals

Definition (Conditional). P implies Q or if P then Q, or P⇒ Q, is Q ∨ (∼P).
i.e. if P is T, then Q is T.
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Remark. If P is F, then we say P ⇒ Q is “vacuously true”

Proposition. (P ∧ Q) ⇒ P, (P ∧Q)⇒ Q, (P ∧ (P ⇒ Q))⇒ Q

Definition (Biconditional). P iff Q or P if and only if Q or P ⇐⇒ Q is (P ⇒
Q) ∧ (Q⇒ P )

P Q P ⇐⇒ Q
T T T
T F F
F T F
F F T

Proposition. 1 - Suppose P and P ⇒ Q. Then Q.
2 - Suppose P ⇒ Q and ∼ Q. Then ∼ P .
3 - Suppose P ⇒ Q and P ⇒∼ Q. Then ∼ P .
4 - Suppose P ∨Q,P ⇒ R, and Q⇒ R. Then R.

Proof of 3. (P ⇒ Q) ∧ (P ⇒∼ Q) ⇒ ∼ P

P Q P ⇒ Q P ⇒∼ Q (P ⇒ Q) ∧ (P ⇒∼Q ) Whole
T T T F F T
T F F T F T
F T T T T T
F F T T T T

De Morgan’s Laws

{
∼ (P ∧Q)⇐⇒∼ P ∨ ∼ Q
∼ (P ∨Q)⇐⇒∼ P ∧ ∼ Q

Definition (Contrapositive). (P ⇒ Q) ⇐⇒ (∼Q ⇒ ∼ P)

2 September 9, 2019

2.1 Predicates

Definition. A predicate P(x) is a family of statements depending on a variable
x

Ex
P (x) = “x is a banana”
Q(x) = “x > 7 ”
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Existential Quantifier:
∃x | P (x): “there exists an x such that P (x)”

Universal Quantifier:
∀x P (x): “for all x, P (x)”

e.g. ∀x,Q(x) is false (Q(x) as above)
∀x(P (x)∨ ∼ P (x))) is always true

e.g.
∼ (∀xP (x))⇐⇒ ∃x(∼ P (x))

∼ (∃P (x))⇐⇒ ∀x(∼ P (x))

Remark. To prove ∃xP (x), just find an x such that P(x). To prove ∀xP (x),
write something like “take an x...”

2.2 Sets

A set is a collection of objects.
e.g.

S = {1, 2, 4}, T = {{1}, 2,water}

{1} ∈ T , but 1 /∈ T . “1 is not an element of T”

N = set of natural numbers {1, 2, 3, ...}
Z = set of integers {...,−2,−1, 0, 1, 2, ...}
Q = rational numbers
R = real numbers
C = complex numbers

Definition. ∀x ∈ S, P (x) just means ∀x(x ∈ S ⇒ P (x))

Definition (Set Inclusion). S ⊆ T (S is a subset of T ) if ∀x ∈ S, x ∈ T

Remark. In definitions, we write “if” instead of “if and only if” even though
the latter is what we mean.

Definition. S = T if S ⊂ T and T ⊂ S

Warning - Order matters with quantifiers!
∀n ∈ Z,∃m ∈ Z | m+ n = 0 is TRUE
∃m ∈ Z | ∀n ∈ Z,m+ n = 0 is FALSE

Proposition. IF S ⊂ T and T ⊂ U , then S ⊂ U

Proof. We know ∀x ∈ S, x ∈ T and ∀yinT, y ∈ U . Therefore, ∀x ∈ S, x ∈ U .
Thus, S ⊂ U .
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2.3 Axioms for Sets

1. There exists a set

2. “Axiom of Specification” (how to take subsets)
Given set S and any predicate P (x), there exists a set T such that

(a) T ⊂ S
(b) ∀x, (x ∈ T ⇐⇒ P (x))

We write T = {x ∈ S | P (x)}.

Take Q(x) = “x 6= x”(always false). Then, take S any set = {x ∈ S |
Q(x)} = ∅ (the empty set).

2.4 Russell’s Paradox

If we take axiom of specification w/o picking S, we get a contradiction. Take
P (x) = “x = x”(always true). Stengthened axiom ⇒ get a set of all sets V. We
will show a contradiction.
Let T = {S ∈ V | S /∈ S}. Is T ∈ T?. If T ∈ T ⇒ T really bad ⇒ T /∈ T ⇒⇐.
If T /∈ T ⇒ T is not really bad ⇒ T ∈ T ⇒⇐. We conclude that there is no
“set of all sets”.

2.5 Axioms Cont.

3. Axiom of Unions
Given sets S, T , there exists S ∪ T such that ∀x, x ∈ S ∪ T ⇐⇒ x ∈ S or
x ∈ T .

3’. Axiom of Intersection
Given sets S, T, there eixsts S ∩ T such that ∀x(x ∈ S ∩ T ) ⇐⇒ x ∈ S
and x ∈ T

Theorem 2.1. A ∪B = B ∪A

Theorem 2.2. (A ∪ b) ∪ C = A ∪ (B ∪ C)

Theorem 2.3. A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

Proof of 2.3. Need to show: ∀x, x ∈ LHS ⇐⇒ x ∈ RHS

x ∈ LHS ⇐⇒ x ∈ A ∩ (B ∪ C)

⇐⇒ x ∈ A ∧ x ∈ (B ∪ C)

⇐⇒ x ∈ A ∧ (x ∈ B ∨ x ∈ C)

⇐⇒ (x ∈ A ∧ x ∈ B) ∨ (x ∈ A ∧ x ∈ C)

⇐⇒ x ∈ A ∩B ∨ x ∈ A ∩ C
⇐⇒ x ∈ (A ∩B) ∪ (A ∩ C)

⇐⇒ x ∈ RHS

7



3 September 11, 2019

3.1 More De Morgan

Definition. Let S, A be sets. Then the complement S-A or S\ A is {x ∈ S |
x /∈ A}

There are two more De Morgan laws.

1. S \ (A ∪B) = (S \A) ∩ (S \B)

2. S \ (A ∩B) = (S \A) ∪ (S \B)

3.2 Power Sets

4. For all sets A, there exists a set P(A), the power set of A, such that its
elements are precisely the subsets of A.

∀B,B ⊆ A⇔ B ∈ P(A)

Ex A = {1, 2}, P(A) = {∅, {1}, {2}, {1, 2}}

Proposition. P(A ∩B) = P(A) ∩ P(B)

Proof. Similar to other set equality proofs.

S ∈ P(A ∩B)⇐⇒ S ⊆ (A ∩B)

⇐⇒ ∀x ∈ S, (x ∈ A ∩B)

⇐⇒ ∀x ∈ S, (x ∈ A and x ∈ B)

⇐⇒ ∀x ∈ S, x ∈ A and ∀x ∈ S, s ∈ B
⇐⇒ S ⊆ A and S ⊆ B
⇐⇒ S ∈ P(A) and S ∈ P(B)

LHS ⇐⇒ S ∈ P(A) ∩ P(B)

3.3 Cartesian Products

“Def”: An ordered pair is a list (a, b) where a, b are math objects. We say
(a, b) = (a′, b′) if a = a′ and b = b′.
Ex (1, 2) 6= (2, 1)

5. Axiom of Products: Givens sets A,B, there exists a set A × B whose
elements are exactly the pais (a, b) with a ∈ A, b ∈ B.

8



∀x, x ∈ A×B ⇐⇒ x = (a, b) with a ∈ A, b ∈ B

Remark. This axiom is actually not necessary

Proposition. A× (B ∪ C) = A×B ∪A× C

Proof. Same format as any other set equality proof.

(a, b) ∈ LHS ⇐⇒ a ∈ A and b ∈ (B ∪ C)

=⇒ a ∈ A and (b ∈ B or b ∈ C)

⇐⇒ (a ∈ A and b ∈ B) or (a ∈ A and b ∈ C)

⇐⇒ (a, b) ∈ A×B or (a, b) ∈ A× C
⇐⇒ (a, b) ∈ (A×B) ∪ (A× C)

3.4 Functions

“Def” Let S, T be sets. A function F : S → T (from S to T) is a rule assigning
an element of T to each element of S. i.e. If s ∈ S, this element of T is denoted
f(s).

Remark. We can make a non-fake def of a function S → T by defining it as a
subset of S × T .

Remark. We write f : S → T , “f is a function from S to T”, “f maps S to T”,
and x 7→ x2, “x maps to x2”.

Definition. If f : S → T , then S is the domain and T is the codomain.

Definition. The graph of f : S → T , (sometimes denoted Γ(f)) is {(x, y) ∈
S × T | y = f(x)}.

Definition. Two functions f: S → T and g : S′ → T ′ are equal if S = S′, T =
T’, and ∀s ∈ S, f(s) = g(s).

Definition. If f : S → T and g : T → U are functions, their composition is
the function g ◦ f : S → U such that (g ◦ f)(s) = g(f(s))∀s ∈ S.

Definition. If S is set, then ids: S → S is called the identity function

3.5 Injectivity and Surjectivity

Definition. f : S → T is injective if wheneber f(s) = f(s′), s = s′.

Definition. f : S → T is surjective if ∀t ∈ T, ∃s ∈ S such that f(s) = t.

Proposition. ids is injective and surjective/
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Proof. If ids(s) = ids(s
′), s = s′. This proves injectivity. ∀s ∈ S, we have ds(s)

= s. This proves surjectivity. Thus, we have both.

Remark. f : S → T injective ⇐⇒ ∀t ∈ T , there is at most one preimage(at
most one s ∈ S such that f(s) = t). f surj ⇐⇒ ∀t ∈ T , there is at least one
element of preimage.

Definition. f : S → T is bijective if it is injective and surjecitve.

Ex/Prop

1. f : S → T, g : T → U , both inj.

(a) ⇒ g ◦ f inj.

(b) ⇒ f inj.

2. f : S → T, g : T → U surj.

(a) g ◦ f surj.

(b) g surj.

3.6 Inverses

Definition. If f : S → T is a function, an inverse to f is a function g : T → S
such that

1. g ◦ f = idS: S → S

2. f ◦ g = idT: T → T

4 September 16, 2019

4.1 Inverses Cont.

Theorem 4.1. f : S → T has an inverse if and only if it is bijective.

Proof. (⇒) by homework problem
(⇐) We know by definition of bijectivity, ∀t ∈ T, ∃s ∈ S | f(s) = t and ∀s, s′ ∈
S, f(s) = f(s′)⇒ s = s′. Define g : T → S.

Lemma 4.2. f(s) = t⇐⇒ g(t) = s

Lemma can be proven by definition of g. Lemma ⇒ if g(t) = s′, then f(s′) = t.
Thus, t = f(s) = f(s′). By injectivity of f, s = s′.

(f ◦ g)(t) = f(g(t))

= f(s)

= t

10



(g ◦ f)(s) = g(f(s))

= g(t)

= s

Remark. By definition, if g is inverse to f, then f is inverse to g.

Proposition. If g, g′ are inverses to f , then g = g′. (Inverses are unique)

Proof. Take any t ∈ T .

g′(t) = (g′ ◦ idt)(t)
= (g′ ◦ (f ◦ g))(t)

= ((g′ ◦ f) ◦ g)(t)

= (ids ◦ g)(t)

= g(t)

Definition. If f : S → T and U ⊆ S, then the image of U(under f), denoted
f(U), is {t ∈ T | ∃s ∈ U with f(s) = t} = {f(s) | s ∈ U}.

Definition. If f : S → T and V ⊆ T , the preimage of V under f , denoted

f−1(V , is {s ∈ S | f(s) ∈ V }.

4.2 Numbers

We will axiomatize R.

Definition. A binary operation on a set S is a function S × S → S.

Definition. A relation on S is a subset of S × S.

Assumption: There exists a set R, equippied with two binary relations +, •, one
relation >, and two elements 0, 1 satisfying the following axioms.

4.3 Axioms

All of the axioms are ∀x, y, z ∈ R, unless otherwise noted.

1. Commutativity
x+ y = y + x x · y = y · x

2. Associativity
x+ (y + z) = (x+ y) + z x · (y · z) = (x · y) · z

3. Distributivity
x · (y + z) = x · y + x · z

11



4. Identity Elements
0 6= 1 0 + x = x 1 · x = x

5. Additive Inverse
∀x ∈ R,∃w ∈ R | w + x = 0. We can denote w by −x.

Note: Axioms 1-5 are a commutative ring.

6. Multiplicative Inverse
∀x 6= 0 ∈ R,∃w ∈ R | w · x = 1. We can denote w by 1

x , x
−1, etc.

Note: Axioms 1-6 are a field.

e.g. Z
nZ = {0, 1, ..., n− 1} with modular arithmetic is a commutative ring and is

a field iff n is prime.
Notation: x+ (−y) =: x− y

x · 1
y = x

y

7. Order Axiom 1
If x > 0 and y > 0, then x+ y > 0 and x · y > 0. (“add + mult preserve
the order”).

8. Order Axiom 2
If x 6= 0, then x < 0 or x > 0 but not both. (“trichotomy”)

9. Order Axiom 3
not 0 > 0 (0 ≯ 0)

10. Order Axiom 4
If x > y, then x+ z > y + z.

Note: Axioms 1 - 10 are an ordered field. (e.g. Q,R)

Proposition. High School Algebra

Proof. exercise

5 September 18, 2019

5.1 Application of Axioms

Proposition (Multiplicative Cancellation). Given an ordered field R,∀a, b, x ∈
R

xa = xb, x 6= 0 =⇒ a = b

Proof. By axiom of multiplicative inverse, ∃w ∈ R with wx = 1. Since xa = xb,
we can multiply both sides by w to obtain wxa = wxb. This statement is equal
to (wx)a = (wx)b by associativity. Then, 1a = 1b. Thus, a = b by the axiom of
identity.
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Theorem 5.1 (Trichotomy). ∀a, b ∈ R, exactly one of the following is true:

1. a > b

2. b > a

3. a = b

Lemma 5.2. ∀a, b ∈ R, a > b⇐⇒ a− b > 0

Proof. Do each direction separately.
(⇒)

a > b⇒ a+ (−b) > b+ (−b) by axiom of add. inverse and axiom 10

= a− b > 0 by def of “-”X

(⇐)

a− b > 0⇒ (a− b) + b > 0 + b by axiom 10

⇒ a+ (−b+ b) > b by associativity and add. identity

⇒ a+ (b+−b) > b by commutativity

⇒ a+ 0 > b by add. inverse

⇒ 0 + a > b by commutativity

⇒ a > b by add. identity

Lemma 5.3. ∀a, b ∈ R, b > a⇐⇒ 0 > a− b

Proof. Either copy Lemma 5.2 (almost) or b > a ⇐⇒ b− a > 0 by Lemma 5.2
then show b− a > 0⇐⇒ 0 > a− b.

Lemma 5.4. ∀a, b ∈ R, a = b⇐⇒ a− b = 0

Proof. Simple

a = b⇒ a+ (−b) = b+ (−b)
⇒ a− b = 0

⇒ (a− b) + b = 0 + b

⇒ (a) + (−b+ b) = b

⇒ a+ (b+−b) = b

⇒ a+ 0 = b

⇒ a = b

13



Proof of 5.1. Let x = a−b. Either x = 0 or x 6= 0 but not both. By Axiom 8, if
x 6= 0, either x > 0 or 0 > x but not both. By Axiom 9, if x = 0 then NOT x >
0, 0 > x. This implies that exactly one of x = 0, x > 0, 0 > x is true. Lemmas
5.2, 5.3, 5.4 tell us that x = 0⇐⇒ 5.4, x > 0⇐⇒ 5.2, 0 > x⇐⇒ 5.3.

Exercises to try on own

• ∀x, 0 · x = 0

• 1 > 0 (tricky)

5.2 Natural Numbers

Definition. S ⊆ R is an inductive set if

1. 0 ∈ S

2. ∀x ∈ S, x+ 1 ∈ S

Ex {x ∈ R | x ≥ 0} is inductive (by above exercise)

Definition. A natural number is an x ∈ R such that x is a number of every
inductive set.

The set of natural numbers is called Z≥0.

Theorem 5.5 (Mathematical Induction). ?? Let P (n) be a predicate defined
on Z≥0 such that

1. P (0) is true (base case)

2. ∀n ∈ Z, P (n)⇒ P (n+ 1)

Then, ∀n ∈ Z≥0, P (n) is true.

Proof. {n ∈ R | P (n)} is an inductive set. Hence Z≥0 ⊆ S by definition of the
natural numbers.

Proposition. ∀n ∈ Z≥0, n
2 > n

Proof. Base Case n = 0 : 0 ≥ 0X. Inductive step: Assume n2 ≥ n.

(n+ 1)2 = n2 + 2n+ 1

≥ n+ 2n+ 1

≥ n+ n+ 1

≥ n+ 1

Proposition. ∀n ∈ Z≥0, 0 + 1 + 2 + ...+ n = n(n+1)
2

14



Proof. Base Case n = 0 : 0 = 0X. Inductive step: Assume 0 + ...+ n = n(n+1)
2 .

Add n+ 1 to both sides.

0 + ...+ n+ n+ 1 =
n(n+ 1)

2
+ n+ 1

= n+ 1
(n

2
+ 1
)

=
(n+ 1)(n+ 2)

2

Definition. A positive integer is a natural number that is not 0.

Definition. An integer is the difference of two natural numbers (called Z).

Definition. A rational number is a quotient of two integers(Q).

“Principle” of recursive definition: For any set S, a function f : Z≥0 → S
may be specified by a choice of f(0) and a function expressing f(n) in terms of
f(m),m < n.

“Proof”
{n ∈ Z≥0 | ∀m < n, the above data determine f(n) uniquely} is an inductive
set.
Ex
Define f : Z≥0 → Z. f(0) = 0, f(1) = 0, f(n) = f(n− 1) + f(n− 2).

5.3 Sums

Define for n ∈ Z≥0, f : Z≥0 → R.

n∑
i=0

f(i)

Remark. A few rules

1. “i” is a dummy variable so we can use anything.

2.
n∑

i=m

f(i) =

n∑
i=1

f(i)−
m−1∑
i=1

f(i)

6 September 23, 2019

6.1 Supremum

Recall: Both Q and R should be ordered fields (satisfy axioms 1-10)
e.g.

√
2 ∈ R, /∈ Q

15



Definition. A subset S ⊆ R is bounded above if ∃y ∈ R such that ∀x ∈ S, x ≤ y.

e.g. S = {3, 3.1, 3.14, 3.141, ...} is bounded above by 4 (or π).

Definition. An upper bound y for S ⊆ R is a least upper bound or supremum
if y is an upper bound for S and if z is an upper bound for S, then y ≤ z.

11. Axiom(completeness): every nonempty bounded above set S ⊆ R has a
supremum.

Proposition. If y and y′ are suprema of S, then y = y′. (suprema are unique)

Proof. y is a supremum, and y′ is an upper bound ⇒ y ≤ y′ by definition of
supremum. y′ is a supremum, and y is an upper bound ⇒ y′ ≤ y by definition
of supremum. So y = y′ by trichotomy.

Notation: supS is the supremum of S.

6.2 Infimum

Definition. S is bounded below if existsy | ∀x ∈ S, y ≤ x.y is a lower bound
for S if ∀x ∈ S, y ≤ x. y is the greatest lower bound or infimum if y is a lower
bound and if z is any other lower bound, then x ≤ y. inf S = infimum of S.

Definition. If S ⊆ R is nonempty and bdd below, then ∃! infimum inf S.

Proof. Let −S = {x | x ∈ S}. −S is nonempty and bounded above. Thus,
sup(−S) exists and is unique.
Claim: − sup(−S) is an infimum for S. Uniqueness same as for sup.

Theorem 6.1 (Approximation Property). Let S ⊆ R be nonempty and bounded
above. ∀ε > 0,∃x ∈ S | supS − ε ≤ x.

Proof by Contradiction. Assume ∃ε > 9.∀x ∈ S, supS − ε > x. Then, supS − ε
is an upper bound for S. Then, by definition of supS, supS ≤ supS − ε.
Contradiction of ε > 0.

Theorem 6.2 (Additivity of Supremum). If S, T ⊆ R nonempty, bounded
above, let S + T := {s + t | s ∈ S, t ∈ T}. Then sup(S + T ) exists and
equals sup(S) + sup(T ).

Proof. Let s = supS, t = supT . ∀x ∈ S, x ≤ s,∀y ∈ T, y ≤ t ⇒ ∀x ∈ S, ∀y ∈
T, x + y ≤ s + t ⇒ s + t is an upper bound for S + T . We want to show that
s+ t is the least upper bound. Suppose not. Then ∃δ > 0 | s+ t− δ is an upper
bound for S + T . Let ε = δ

2 .

Approximation Property =⇒∃x ∈ S | s− ε < x

∃y ∈ T | t− ε < y

Then x+ y ∈ S + T . s+ t− δ = s+ t− 2ε < x+ y. Contradiction!
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Proposition. Suppose S, T ⊆ R such that ∀x ∈ S, ∀y ∈ T, x ≤ y. Then supS
exists and inf T exists, and supS ≤ inf T .

Proof. Any x ∈ S is a lower bound for T
⇒ inf T exists

Any y ∈ T is upper bd for S
⇒ supS exists

Suppose supS > inf T . Then S − supS − inf T . Let ε = δ
2 .

Approx⇒ ∃x ∈ S | supS−ε < x. Similar approx. result⇒ ∃y ∈ T | inf T +ε >
y.

y < inf T + ε = supS − ε < x

Contradiction! supS ≤ inf T

Theorem 6.3. Z≥0 ⊆ R has no upper bound.

Proof. By contradiction. If it did, let Ψ = supZ≥0. Approx w/ ε = 1
2 ⇒

∃n ∈ Z≥0 such that Ψ − 1
2 < n. Then n + 1 ∈ Z≥0 and n + 1 > Ψ + 1

2 > Ψ.
Contradiction.

6.3 Absolute Value

| · | : R→ R

|x| =

{
x x ≥ 0

−x x < 0
”Distance” between x, y ∈ R is |x − y|. |x − y| < ε means

x, y are “ε-close”.

Theorem 6.4 (Triangle Inequality).

|x+ y| ≤ |x|+ |y|

|x− z| ≤ |x− y|+ |y − z|

Proof. Easy if x = 0 or y = 0. If both > 0, then LHS = x+ y = RHS. If both
< 0, then LHS = −x− y = RHS. If y < 0 < x, RHS = x− y
x− y > −x− y
x− y > x+ y

}
=⇒ x− y ≥ |x+ y|

Similar if x < 0 < y.

7 September 25, 2019

7.1 Archimedean Prop.

Proposition (Archimedean Property). Let x > 0 and y ∈ R. Then ∃n ∈ Z |
nx > y.

17



Proof. Consider y
x . From earlier result, ∃n ∈ Z≥0 with

n >
y

x
⇐⇒ nx > y

Corollary 7.0.1. If a, x, y ∈ R with a ≤ x ≤ a + y
n for every n ∈ Z≥0, then

a = x.

Proof. Assume otherwise, so a < x⇐⇒ x− a > 0.

Prop⇒ ∃n ∈ Z≥0 such that n(x− a) > y

x− a > y

n

x >
y

n
+ a

7.2 Finite Sets

Notation [n] = {m ∈ Z≥0 | 0 < m ≤ n}
= {1, 2, 3, ..., n}

Theorem 7.1. ∀m,n ∈ Z≥0

1. ∃ inj. f : [m]→ [n]⇐⇒ m ≤ n

2. ∃ surj. f : [m]→ [n]⇐⇒ m ≥ n

Proof. Proof of both.

1. (⇐) m ≤ n so define f : [m]→ [n]. f(i) = i so f is clearly injective.

(⇒) Induct on m (fix n). Assume for given m, all n. Suppose f :
[m + 1] → [n] is injective. ∀i ∈ [m + 1], if i 6= m + 1 ⇒ f(m + 1).
Define f̄ : [m]→ [n]\{f(m+1)}. f̄(i) = f(i) so it is stilll injective. Define
h : [n]\{f(m+ 1)} → [n− 1].

h(i) =

{
i if i < f(m+ 1)

i− 1 if i > f(m+ 1)
Easy to show that h is injective. Then

h ◦ f̄ : [m] → [n − 1] is injective (composition of injective functions).
Inductive hypothesis ⇒ m ≤ n− 1⇒ m+ 1 ≤ n

2. Similar to 1
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Definition. A set is finite if ∃ bijection f : [n]→ S for some n ∈ Z≥0. If not,
S is infinite.

Proposition. Given finite set S, the n ∈ Z≥0 as above is unique.

Proof. Suppose f : [n]→ S.g : [m]→ S are bijections. Then let h : S → [n] be
inverse of f . Then h ◦ g : [m]→ [n] is bijective.

Thm applied to h ◦ g =⇒m ≤ n
n ≤ m

=⇒n = m

Ex
# of elemenets: |Ṡ| (like magnitude). If S, T are finite sets, then S ∪ T, S ∩
T, S × T, ST are finite. Any subset of S is finite. If S ⊆ T, |Ṡ| ≤ |Ṫ |.

Ex
Z≥0,Z,Q,R are infinite.

Notation: Suppose f : S → T,U ⊆ S. Then, f |U : U → T.f |U (s) = f(s), s ∈ U .

Definition. The inclusion of S ⊆ T is idT |S.

Ex
f injective ⇒ f |U injective. Does not hold for sujectivity.

Definition. For a ≤ b ∈ R, an interval is one of

[a, b] = {a ≤ x ≤ b | x ∈ R}
(a, b) = {a < x < b | x ∈ R}
[a, b) = {a ≤ x < b | x ∈ R}
(a, b] = {a < x ≤ b | x ∈ R}

or allow a or b to be “∞” or “−∞” for open intervals w/ −∞ < x <∞∀x ∈ R.

Ex
If a 6= b, these are infinite sets.

Definition. Some function definitions

If f : [a, b]→ R then f + g : [a, b]→ R
g : [a, b]→ R fg : [a, b]→ R

If c ∈ R, cf : [a, b]→ R. (cf)(x) = cf(x).
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Definition. If f1, . . . , fn : [a, b] → R, c1, . . . , cn ∈ R, then the corresponding
linear combination is

n∑
i=1

cifi = c1f1 + c2f2 + . . . cnfn

7.3 Step Functions

Definition. f : [a, b] → R is a step function if ∃ a finite set of real numbers
S = {x0, . . . , xn} ⊂ R, called a partition for f , with a = x0 < x1 < x2 < . . . <
xn = b and c1 . . . c2 ∈ R such that ∀i ∈ [n],∀x ∈ (xi−1, xi), f(x) = ci.

(i.e f |(xi−1,xi) = ci)

Proposition. If f, g : [a, b]→ R, so are f + g, fg.

Proof. Let S be partition for f and let T be partition for g. Idea: Then S∪T is
a partition for f + g and fg. Let S = {x0, . . . , xm}, T = {yo, . . . , yn}. S ∪ T =
{z0, . . . , zp} (is finite by earlier exercise). For any zk ∈ S ∪ T with k > 0, let
ki = greatest element of S | xi < zk. Let yj = greatest element of T | yj < zk.
Then zk−1 = a maximum of xi, yj and zk = a minimum of xi+1, yj+1.
Hence (zk−1, zk) ⊂ (xi, xi+1) ∩ (yj , yj+1)

⇒ f + g, fg, constant on (zk−1, zk)

8 September 30, 2019

8.1 Integrals of Step Functions

Definition (Integral of step functions). Let f be a step function on [a, b] with
partition {x0, x1, . . . , xn} and such that f |(xi−1,xi)(x) = ci with c1 ∈ R. Then∫ b

a

f =

n∑
i−1

ci(xi − xi−1)

Proposition. This is well-defined (doesn’t depend on partition).

Proof. Given two partitions P,Q

1. Assume P ≤ Q. Sketch: use that c(xi+1−xi) = c(xi+1−xi+1)−c(xi+1−xi)
and use induction on |Q− P |.

2. In general, for any P,Q we have P ⊆ P ∪Q and Q ⊆ P ∪Q so reduces to
1 twice.
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Conventions ∫ a

a

f = 0

if b < a,

∫ b

a

f = −
∫ a

b

f

Theorem 8.1 (Properties of
∫

for step functions). f, g : [a, b]→ R and c, ci ∈ R

1. ∫ b

a

(f + g) =

∫ b

a

f +

∫ b

a

g

2. ∫ b

a

cf = c

∫ b

a

f

3. (
n∑
i=1

cifi

)
=

n∑
i=1

ci

∫ b

a

fi

4. If f ≤ g (i.e ∀x ∈ [a, b], f(x) ≤ g(x)), then∫ b

a

f ≤
∫ b

a

g

5. ∫ c

a

f =

∫ b

a

f +

∫ c

b

f

6. ∫ b

a

f(x)dx =

∫ b+c

a+c

f(x− c)dx

7. If c 6= 0, then ∫ cb

ca

f
(x
c

)
dx = c

∫ b

a

f(x)dx

Proof of additivity. If P,Q are partitions for f, g, then P ∪Q is partition for f
and g. Say f |(xi−1,xi)ci and g|(xi−1,xi)di. (f + g)|(xi−1,xi)(x) = ci + di. So∫ b

a

(f + g) =

n∑
i=1

(ci + di)(xi − xi−1)

=

n∑
i=1

(ci(xi − xi−1) + di(xi − xi−1))

=

n∑
i=1

ci(xi − xi−1) +

n∑
i=1

di(xi − xi−1)

=

∫ b

a

f +

∫ b

a

g
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Lemma 8.2.
∑n
i=1(ai + bi) =

∑n
i=1 ai +

∑n
i=1 bi

Pf of Lemma. Induct on n. Base case: n = 0X. Inductive Step: Assume for n.

n+1∑
i=1

(ai + bi) =

n∑
i=1

(ai + bi) + an+1 + bn+1

=

n∑
i=1

ai +

n∑
i=1

bi + an+1 + bn+1

=

n+1∑
i=1

ai +

n+1∑
i=1

bi

8.2 More General Functions

Let f : [a, b]→ R be a function.

Definition. f is bounded (on [a, b]) if ∃c ∈ R such that |f(x)| ≤ c for all
x ∈ [a, b].

Definition. For f bounded, the lower integral is I(f) = supS(f) where S(f) ={∫ b
a
s | s is a step function and s ≤ f

}
. Similarly, let Ī(f) = inf S̄(f)(upper integral)where

S̄(f) =
{∫ b

a
t | t is a step function and f ≤ t

}
.

Proposition. This is well defined.

Proof. For I(f), need to check that S(f) is not empty and bounded above.
Constant function s(x) = −C is a step function and s ≤ f so S(f) is nonempty.
Let t(x) = C. Then f ≤ t. So any step function s with s ≤ f satifies s ≤ t. By
comparison for step functions, ∫ b

a

s ≤
∫ b

a

t

so this number is an upper bound for S(f). Similar for upper integral.

Definition. If f : [a, b]→ R is a bounded function, then we say f is integrable
if I(f) = Ī(f) and the integral is∫ b

a

f = I(f) = Ī(f)

Proposition. I(f) ≤ Ī(f)
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Proof. ∀s, t with s ≤ f ≤ t, we have
∫ b
a
s ≤

∫ b
a
t by comparison for step func-

tions. So ∀x ∈ S(f),∀y ∈ S̄(f), x ≤ y ⇒ supS(f) ≤ inf S̄(f).

Theorem 8.3. Let f : [0, 1] → R be defined f(x) =

{
1 if x ∈ Q
0 if x /∈ Q

. We will

assume there exists some x ∈ Q.

Proof. Homework Problem =⇒ ∀a < b ∈ R,∃x with a < x < b and x ∈ Q.
There is some irrational x ∈ R. Arch. Prop ⇒ ∃n ∈ Z≥0 with n > x. Thus,

0 < x < n
0 < x

n < 1
0 < (b− a) xn < b− a
a < (b− a) xn + a < b

Sums, products, quotients, differences of rational numbers are rational, so

if (b − a) xn + a were rational then
(

(b−a) xn+a−a
b−a

)
n = x ⇒ x is rational. Thus,

(b− a) xn + a is rational by contradiction.

Lemma 8.4. Now suppose a < b are arbitrary reals. HW Prob⇒ ∃c, d ∈ Q with
a < c < d < b. Apply previous to c, d⇒ ∃ irrational x, c < x < d⇒ a < x < b.
“R\Q is dense in R”.

9 October 2, 2019

9.1 Integrable Functions

f : [0, 1] → R defined by f(x) =

{
1 if x ∈ Q
0 if x /∈ Q

. We know: ∀a, b,∃x ∈ Q | a <

x < b and ∃y /∈ Q | a < y < b.

Proof that f is not integrable. Let s be step function with s ≤ f . ∃ partition
P = {x0, . . . , xn} with s|(xi−1,xi) constant.
∃y /∈ Q with xi−1 < y < xi

⇒ f(y) = 0
⇒ s(y) ≤ 0
⇒ s|(xi−1,xi) ≤ 0
⇒ s ≤ 0 except at points of P (maybe)

Hence
∫ 1

0
s ≤ 0 ⇒ I(F ) ≤ 0 (in fact I(f) = 0 since s = 0 works). Similarly, if
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t ≥ f , then t|(xi−1,xi) = constant on subints of same partition.

∃x ∈ Q | xi−1 < x < xi ⇒ f(x) = 1

⇒ t(x) ≥ 1

⇒ t|(xi−1,xi)

⇒ t ≥ 1(except maybe at pts of partition)

⇒
∫ 1

0

t ≥ 1

⇒ Ī(f) ≥ 1

In fact Ī(f) = 1 because t = 1 works. Thus, I(f) 6= Ī(f)⇒ f not integrable.

Theorem 9.1. All previous properties of
∫ b
a

for step functions also hold for
integrable functions. (also if functions f, g, fi are integrable, so are f + g, etc
. . .)

Pf of Additivity. Assuming f, g are integrable.

Lemma 9.2. If S ⊆ T bdd above, nonempty in R, then supS ≤ supT .

Proof. supT is an upper bd for S, so supS ≤ supT .

Let s ≤ f, s′ ≤ g be step functions ⇒ s + s′ ≤ f + g. Additivity for
step functions ⇒

∫
s + s′ =

∫
s +

∫
s′ ⇒ if x ∈ S(f) and y ∈ S(g), then

x+ y ∈ S(f + g). i.e. {x+ y | x ∈ S(f), y ∈ S(g)} ⊆ S(f + g).
Lemma ⇒ sup{x+ y | x ∈ S(f), y ∈ S(g)} ≤ I(f + g).
Additivity of sup ⇒ I(f) + I(g) ≤ I(f + g). Similarly, we get Ī(f) + Ī(g) ≥
Ī(f + g).

f, g integrable⇐⇒I(F ) = Ī(f)

I(g) = Ī(g)∫
f +

∫
g = I(f) + I(g) ≤ I(f + g) ≤ Ī(f + g) ≤ Ī(f) + Ī(g)

This implies that all ≤ are =. Thus we get the result.

9.2 Monotonicity

Definition. Say f : [a, b]→ R is nonincreasing if ∀x, y ∈ [a, b], x ≤ y ⇒ f(x) ≥
f(y) or is nondecreasing if ∀x, y ∈ [a, b], x ≤ y ⇒ f(x) ≤ f(y). A function is
monotonic if it is nonincreasing or nondecreaisng.

Theorem 9.3. If f : [a, b]→ R is monotonic, then it is integrable.

Lemma 9.4. If f is monotonic on [a, b], it is bounded.

Proof. Suppose f nondecreasing. Let C = max{|f(a)|, |f(b)|}. If x ∈ [a, b],
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1. if f(x) ≥ 0, then |f(x)| = f(x) ≤ f(b) = |f(b)| ≤ C.

2. if f(x) < 0, then |f(x)| = −f(x) ≤ −f(a) ≤ |f(a)| ≤ C.

f nonincreasing similar.

Proof of Theorem. Important to note, f nonincr. ⇐⇒ −f non decreasing. By
properties of

∫
, f integrable ⇐⇒ −f integrable. So suffices to show when f is

nondecreasing can also assume [a, b] = [0, 1] : indeed, let g(x) = f(a+ (b− a)x).

g : [0, 1] → R ⇒ f(y) = g
(

1
b−ay + a

b−a

)
. By translation + dilation properties

f int ⇐⇒ g int. Pick n ∈ Z>0. sn, tn : [0, 1]→ R.sn(x) = f
(
bnxc
n

)
.

tn(x) =

{
f
(
bnxc+1

n

)
if x < 1

f(1) if x = 1

⇒ sn, tn are step functions as sn |( i−1
n , in )= f

(
i−1
n

)
and tn |( i−1

n , in )=

f
(
i
n

)
Also, sn ≤ fn ≤ tn by same description and nondecreasingness. Hence,∫ 1

0

sn ≤ I(f) ≤ Ī(f) ≤
∫ 1

0

tn

0 ≤ Ī(f)− I(f) ≤
∫ 1

0

(tn − sn) (using additivity)

∫ 1

0

(tn − sn) =

n∑
i=1

(
f

(
i

n

)
− f

(
i− 1

n

))
1

n

=
1

n
(f(1)− f(0))

Therefore, ∀n ∈ Z≥0, 0 ≤ Ī(f) − I(f) ≤ 1
n (f(1) − f(0)). ∀n, n ≤ f(1)−f(0)

Ī(f)−I(f)
.

Violates arch. property ⇒ Ī(f)− I(f) = 0⇒ f integrable.

10 October 7, 2019

10.1 Piecewise Monotonicity

Recall: We know that monotonic ⇒ integrable.

Definition. f : [a, b]→ R is piecewise monotonic if ∃ partition P = {x0, . . . , xn}
of [a, b] such that f |(xi−1,xi) is monotonic for 1 ≤ i ≤ n.

Corollary 10.0.1. If f : [a, b]→ R is piecewise monotonic, then f is integrable.

Proof. Concatenation + Induction

Corollary 10.0.2. f a linear combo of piecewise monotonic functions ⇒ f
integrable.
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Proof. Use linearity of
∫

Corollary 10.0.3. The function f(x) =

{
1 x ∈ Q
0 x /∈ Q

on [0, 1] is not a linear

combo of piecewise monotonic functions

Proof. Nothing was written?

10.2 Polynomials

Definition. For x ∈ R, n ∈ Z≥0, defined inductively x0 = 1 and xn+1 = xn · x.

A polynomial is a linear combo of x 7→ xn i.e. f(x) =
∑N
n=1 cnx

n.

Corollary 10.0.4. Polynomials on [a, b] are integrable.

Proof. HW

Proposition. If a ≤ c ≤ d ≤ b ∈ R and f [a, b] → R integrable on [a, b], then
f |[c,d] is integrable.

Proof. On HW?

Definition. If f : [a, b]→ R is integrable, let the indefinite integral of f be the
function g(x) =

∫ x
a
f (g : [a, b]→ R).

10.3 Limits

Definition. For f : [a, b]→ R, c ∈ [a, b], k ∈ R, say limx→c f(x) = K whenever
∀ε > 0,∃δ > 0 such that ∀x ∈ [a, b], 0 < |x− c| < δ ⇒ |f(x)−K| < ε.

Ex

1. f(x) = K, limx→c f(x) = K. For any ε > 0, pick δ = 13 2
3 . Then 0 <

|x− c| < δ ⇒ |f(x)−K| = 0 < ε.

2. f(x) = x, limx→c f(x) = c. For any ε > 0, pick δ = ε. Then 0 < |x− c| <
δ = ε⇒ 0 < |f(x)− c| < ε.

3. f(x) = ax, a ∈ R, limx→c f(x) = ac. For any ε > 0, pick δ = ε
|a| . Then

0 < |x− c| < δ ⇒ 0 < |ax− ac| < δ|a| = ε.

4. f(x) =

{
1 x ∈ Q
0 x /∈ Q

. Claim: There is no K for which limx→0 f(x) = K.

We say the limit “does not exist”.

Proof for Claim in 4. Suppose it did, so limx→0 f(x) = K. Let ε = 1
2 > 0.

∃δ > 0 such that 0 < |x − 0| < δ ⇒ |f(x) −K| < 1
2 . Choose x0 ∈ Q such that

0 < |x0| < δ. Choose x1 /∈ Q such that 0 < |x1| < δ. Then |f(x0)−K| < 1
2 ⇒

|1−K| < 1
2 ⇒ −

1
2 < 1−K < 1

2 ⇒
1
2 < K < 3

2 . Also, |f(x1)−K| < 1
2 ⇒ |K| <

1
2 ⇒ −

1
2 < K < 1

2 which is a contradiction.
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Proposition. limx→c f(x) is unique if it exists.

Proof. Assume limx→c f(x) = K1 and limx→c f(x) = K2. ∀ε,∃δ1 > 0 | − <
|x− c| < δ1 ⇒ |f(x)−K1| < ε and ∃δ2 > 0 | 0 < |x− c| < δ2 ⇒ |f(x)−K2| < ε.
Choose x with 0 < |x− ε| < min(δ1, δ2). Then

|K1 −K2| = |K1 − f(x) + f(x)−K2|
≤ |K1 − f(x)|+ |f(x)−K2|
< ε+ ε

= 2ε⇒ K1 = K2

Theorem 10.1 (Basic limit Theorem). If limx→c f(x) = K, limx→c g(x) = L,
then

1. limx→c(f(x) + g(x)) = K + L

2. limx→c(f(x)− g(x)) = K − L

3. limx→c(f(x) · g(x)) = K · L

4. limx→c
f(x)
g(x) = K

L if L 6= 0 and g(x) 6= 0 for all x.

5. Linearity:

lim
x→c

N∑
i=1

fi(x) =

N∑
i=1

lim
x→c

fi(x)

Proof.

1. For ε > 0,∃δ1, δ2 | 0 < |x − c| < δ1 ⇒ |f(x) −K| > ε
2 and 0 < |x − c| <

δ2 ⇒ |g(x)− L| < ε
2 . Let δ = min(δ1, δ2). Then 0 < |x− c| < δ ⇒

|f(x) + g(x)−K − L| ≤ |f(x)−K|+ |g(x)− L| < ε

�

3. Assume first that L = 0. Let D = max{1, |K|} > 0. Know ∀ε1 > 0,∃δ1 >
0 | − < |x − c| < δ1 ⇒ |f(x) − K| < ε1. In particular, thsi is true for
ε1 = D. Then

0 < |x− c| < δ1 ⇒ |f(x)| = |f(x)−K +K|
≤ |f(x)−K|+ |K|
≤ 2D

Also know ∀ε2 > 0,∃δ2 > 0 | 0 < |x − c| < δ2 ⇒ |g(x)| < ε2. In
particular, for any ε > 0, pick ε2 = ε

2D . Take δ = min(δ1, δ2). Then
0 < |x− c| < δ ⇒ |f(x)g(x)−KL| = |f(x)g(x)| < (2D) ε

2D = ε.
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11.1 Limits Cont.

Recall: We were trying to prove if limx→c f(x) = K, limx→c g(x) = L, then

lim)x→ cf(x)g(x) = KL and limx→c
f(x)
g(x) = K

L if g(x) 6= 0 and L 6= 0.

Proof. We showed limx→c f(x)g(x) = 0 if L = 0. In general, f(x)g(x)−KL =
f(x)(g(x)− L) + (f(x)−K)(L).

lim
x→c

(f(x)g(x)−KL) = lim
x→c

(f(x)(g(x)− L) + ((f(x)−K)(L))

= lim
x→c

f(x)(g(x)− L) + lim
x→c

(f(x)−K)(L)

= 0 + 0

= 0

lim
x→c

f(x)g(x) = lim
x→c

(f(x)g(x)−KL+KL)

= lim
x→c

f(x)g(x)− lim
x→c

(KL+KL)

= lim
x→c

(f(x)g(x)−KL) +KL

= 0 +KL

= KL

Now lets show division. We know

lim
x→c

f(x)

g(x)
= lim
x→c

f(x) · lim
x→c

1

g(x)

= K · lim
x→c

1

g(x)∣∣∣∣ 1

g(x)
− 1

L

∣∣∣∣ =

∣∣∣∣L− g(x)

g(x)L

∣∣∣∣
Note that |g(x)− L| < |L|

2 .

|L| = |L+ g(x)− g(x)|
≤ |L− g(x)|+ |g(x)|

<
|L|
2

+ |g(x)|

⇒ |L|
2
< g(x)

Given ε > 0, take ε1 = min( |L|2 ,
|L|2

2 ε). Then, ∃δ1 > 0 | 0 < |x − c| < δ1 ⇒
|g(x)− L| < ε1. |L|2 < g(x)⇒ |g(x)| > |L|

2 .
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∣∣∣ 1
g(x) −

1
L

∣∣∣ =
∣∣∣L−g(x)
g(x)L

∣∣∣ = |L−g(x)|
|g(x)||L|

< < 2|L−g(x)|
|L|2

<
��

���2
|L|2 ·

|L|2
2 ε

Thus,
∣∣∣ 1
g(x) −

1
L

∣∣∣ < ε.

Theorem 11.1 (Squeeze Theorem). If f ≤ g ≤ h and limx→c f(x) = limx→c h(x) =
K exists then limx→c g(x) = K.

Proof. Given ε > 0,∃δ1 > 0 | 0 < |x − c| < δ1 ⇒ |f(x) −K| < ε and ∃δ2 > 0 |
0 < |x− c| < δ2 ⇒ |h(x)−K| < ε. Pick δ = min(δ1, δ2). Then,

0 < |x− c| < δ ⇒ K − ε ≤ f(x) ≤ g(x) ≤ h(x) ≤ K + ε

⇒ K − ε < g(x) < K + ε

⇔ |g(x)−K| < ε

11.2 Continuity

Definition. f : [a, b] → R is continuous at c ∈ [a, b] if limx→c f(x) = f(c).
Discontinuous if not. f is continuous if it is continuous at each c ∈ [a, b].

Ex f(x) = K
We showed limx→0 f(x) = K ⇒ f is continuous

Ex f(x) = ax
We showed limx→c f(x) = limx→c(ax) = ac = f(c)⇒ f is continuous

Ex f(x) = axn

Induction + limit thm for result⇒ limx→c f(x) = acn = f(c)⇒ f is continuous

Ex Polynomials are continuous

Ex f(x) =

{
1 x = 0

0 x 6= 0

Calculate limx→0 f(x) = 0 6= 1 = f(0) so f is not continuous at x = 0.

Ex f(x) =

{
1 x ∈ Q
0 x /∈ Q

We showed limx→0 f(x) does not exists ⇒ f is not continuous.

Theorem 11.2. If f, g are continuous at c, then

1. f + g is cont. at c
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2. f − g is cont. at c

3. fg is cont. at c

4. f/g is cont. at c if g(x) 6= 0 for all x

“Pf”.

1. We know limx→c f(x) = f(c) and limx→c g(x) = g(c). By adding these we
get

lim
x→c

f(x) + lim
x→c

g(x) = f(c) + g(c)

lim
x→c

(f(x) + g(x)) = (f + g)(c)

Facts(easy):

- f is cont. at c⇐⇒ ∀ε > 0,∃δ > 0 such that |x−c| < δ ⇒ |f(x)−f(c)| < ε

- limx→c f(x) = K ⇐⇒ limh→0 f(c+ h) = K

Theorem 11.3. If f : [a, b] → R is continuous at c ∈ [a, b] and g : R → R is
continuous at f(c), then g ◦ f : [a, b]→ R is continuous at c.

Proof. We know (1) ∀ε > 0,∃δ1 > 0 | |x− c| < δ1 ⇒ |f(x)− f(c)| < ε1
(2) ∀ε2 > 0,∃δ2 > 0 | |y − f(c)| < δ2 ⇒ |g(y)− g(f(c))| < ε2
Given ε > 0. Take ε2 = ε. From (2), get δ2 > 0. Take ε1 = δ2. From (1), get
δ1 > 0. Choose δ = δ1. |x− c| < δ ⇒ |f(x)− f(c)| < ε1. Let y = f(x).

⇒ |g(f(x))− g(f(c))| < ε2 = ε

|(g ◦ f)(x)− (g ◦ g)(c)| < ε

Theorem 11.4. Let f : [a, b] be continuous. Then f is bounded.

Ex
Not true if open interval

f : (0, 1]→ R f(x) =
1

x

Not true of discontinuous at only one point.

f(x) =

{
0 x = 0
1
x x 6= 0

Not true if interval is not bounded

f : [0,∞)→ R f(x) = x

30



12 October 14, 2019

12.1 Boundedness

Theorem 12.1. A continuous function f : [a, b]→ R is bounded.

Lemma 12.2. Let S = {x ∈ [a, b] | f is bounded on [a, x]}. Then c = supS and
∃d > c | f is bounded on [a,min(b, d)].

Proof of Thm (assuming lemma). Let c, d be as in lemma. S ⊆ [a, b] ⇒ c ≤ b.
If c < b, then c < min(b.d) and Lemma ⇒ f bdd on [a,min(b, d)]. Therefore
min(b.d) ∈ S > supS ⇒⇐ Contradiction. So c = b, so min(b, d) = b. Lemma
⇒ f bdd on [a, b].

Proof of Lemma. We know a ∈ S, b upper bd for S ⇒ c = supS exists. Take
ε = 1 in def of continuity at x = c. We then know that −1 < f(x) − f(c) <
1⇒ f(c)− 1 < f(x) < f(c) + 1. Let k = max(|f(c)− 1|, |f(c) + 1|). Therefore,
|f(x)| < K. Hence, f is bdd on (c − δ, c + δ). By approximation property of
sup, ∃y ∈ S | c − δ < y ≤ C ⇒ f bdd on [a, y] ⇒ f is bdd on [a, c + δ]. Let
d = c+ δ

2 ⇒ f is bdd on [a,min(b, d)].

12.2 Minimums and Maximums

Theorem 12.3 (Extreme Value Thm). A continuous f : [a, b] → R has an
absolute min/max.

Proof. LetM(f) = sup{f(x) | x ∈ [a, b]} andm(f) = inf{f(x) | x ∈ [a, b]}(existence
by previous theorem). Suppose there is no c ∈ [a, b] | f(c) = M(f). Then the
function M(f)− f(x) is nonzero ⇒ g(x) = 1

M(f)−f(x) is defined and continuous

on [a, b]. Previous Thm ⇒ it is bounded, say |g(x)| ≤ K. Approx prop of sup
⇒ ∃x ∈ [a, b] | 0 ≤ M(f)− f(x) < 1

K . Then |g(x)| = 1
|M(f)−f(x)| > K. Similar

for m(f).

An application
Let f : [a, b]→ [a, b] satisying |f(x)−f(y) < |x−y| if x 6= y (f is “contracting”).
Then ∃!c such that f(c) = c (a “fixed point”)

Proof. Uniqueness: if f(c) = c, f(d) = d, then |f(c) − f(d)| = |c − d| ⇒ c = d
contradiction
Existence: Let g(x) = |f(x)0x|. g is continuous by limit rules. Extreme Value
Thm ⇒ ∃c | ∀x ∈ [a, b], g(c) ≤ g(x). Suppose g(c) 6= 0. f(c) 6= 0, so

|g(f(c))| = |f(f(c))− f(c)| < |f(c)− c| = g(c) by definition

|g(f(c))| < |g(c)| so contradiction ⇒ g(c) = 0⇒ f(c) = c

Definition. f : [a, b]→ R, let span(f) = M(f)−m(f).

Theorem 12.4 (Small-Span Thm). If f : [a, b] → R is continuous, then ∀ε >
0,∃ a partition P = {x0, . . . , xn} at [a, b] such that span(f |[xi−1,xi]) < ε.
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Lemma 12.5. Fix ε > 0. Let S = {x | the conclusion of Thm is true forf[a,x]}.
Then ∃c = supS, and ∃d > c such that thm is true on [a,min(b, d)].

Lemma ⇒ Thm exactly as before

Pf of Lemma. a ∈ S, S bdd above by b ⇒ c = supS exists. Continuity at
c ⇒ ∃δ > 0 | |x − c| < δ ⇒ |f(x) − f(c)| < ε

2 . We then can get the following
inequality.

−ε
2
< f(x)− f(c) <

ε

2
(∗)

EVT applied to f |[c− δ2 ,c+ δ
2 ]∩[a,b] has a max M , min m. By (∗),M < f(c) + ε

2

and m > f(c)− ε
2 .

M −m <
(
f(c) +

ε

2

)
−
(
f(c)− ε

2

)
= ε

Pick d = c+ δ
2 . Approx ⇒ ∃y ∈ S | y > c− δ

2 . ∃P = {x0 = a, . . . , y} such that
thm holds. Let P ′ = {x0, . . . , xn = y,min(b, d)}. Then lemma holds with f ′ on
[a,min(b, d)].

13 October 16, 2019

13.1 Integrability

Theorem 13.1. f : [a, b]→ R continuous. Boundedness ⇒ f integrable.

Proof. Bddness thm ⇒ f bdd. Given ε > 0, Small-Span Thm ⇒ ∃P =
{x0, . . . , xn} such that f |[xi−1,xi]<

ε
b−a ∀i, 1 ≤ i ≤ n.

Let s(x) =

{
m(f |[xi−1,xi] if x ∈ [xi−1, xi))

f(b) if x = b

Let f(x) =

{
M(f |[xi−1,xi] if x ∈ [xi−1, xi))

f(b) if x = b

Then s ≤ f ≤ t and∫ b

a

(t− s) =

n∑
i=1

(
M
(
f |[xi−1,xi]

)
−m

(
f |[xi−1,xi]

))
=

n∑
i=1

span
(
f |[xi−1,xi]

)
(xi − xi−1)

<

n∑
i=1

ε

b− a
(xi − xi−1)

<
ε

b− a

n∑
i=1

(xi − xi−1)

=
ε

b− a
(b− a)

= ε
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Concluded by C.5 on HW5

Theorem 13.2. If f : [a, b]→ R integrable then g(x) =
∫ x
a
f (g : [a, b]→ R) is

continuous.

Proof. By def of integrable, f bdd. Say |f(x)| ≤ K ∀x ∈ [a, b]. To show g
continuous given ε > 0, take δ = ε

K . Then |y − x| < δ

⇒ |g(y)− g(x)| =
∣∣∣∣∫ y

a

f −
∫ x

a

f

∣∣∣∣
=

∣∣∣∣∫ y

x

f

∣∣∣∣
≤
∫ y

x

|f |

≤ K

≤
∫ y

x

K = (y − x)K < δK =
ε

K
K = ε

13.2 Bolzano + IVT

Theorem 13.3 (Bolzano). Let f : [a, b]→ R continuous and f(a) < 0 < f(b).
Then ∃x ∈ [a, b] such that f(x) = 0.

Remark. This is false is we have a single discontinuity, or if R is replaced by
Q.

Lemma 13.4. If f : [a, b]→ R continuous and f(x) > 0, then ∃δ > 0 such that
|y − x| < δ ⇒ |f(y)| > 0.

Pf of Lemma. Take ε = f(x) > 0. Continuity at x ⇒ ∃δ > 0 | |y − x| < δ ⇒
|f(x)− f(y)| < ε.

−f(x) < f(x)− f(y) < f(x)
−f(x) < −f(x) + f(y) < f(x)

0 < f(y) < 2f(x)

Pf of Thm. Let S = {x ∈ [a, b] | f(x) < 0} at S ⇒ S nonempty. S bdd above
by b⇒ supS exists.
Assume f(c) > 0
Then c > a. Apply lemma to f at c⇒ ∃δ > 0 | |y− c| < δ. In particular ∃y < c
with f(y) > 0. But then y is an upper bd for S; contradiction.
Assume f(c) < 0
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Then c < b. Lemma applied to −f at c ⇒ ∃δ > 0 | |y − c| < δ ⇒ f(y) < 0.
In particular ∃ some y > c with f(y) < 0, so y ∈ S, contradicting c = supS.
Therefore f(c) = 0.

Theorem 13.5 (Intermediate Value Theorem). Suppose g : [a, b] → R contin-
uous. g(a) < K < g(b). Then ∃c ∈ [a, b] | g(c) = K.

Proof. Apply Bolzano to f(x) = g(x)−K.

13.3 Inverses

Proposition. Let f : [a, b] → R be continuous and strictly increasing. Then
f induces a bijection. f : [a, b] → [c, d] where c = f(a) and d = f(b) and the
inverse function f−1 : [c, d]→ [a, b] is also continuous and strictly increasing.

“Pf”. Inj. by strictly incr.
Surj. by IVT
Continuity: See apostol

Ex f(x) = xn

f : [0, b]→ R⇒ inverse function f−1
(
x

1
n

)
= n
√
x
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14.1 Derivatives

Given f : [a, b]→ R and x ∈ [a, b], we say f is differentiable at x if limh→0
f(x+h)−f(x)

h
exists. If so, the derivative f ′(x) is the value. Also note that we can write this

as limy→x
f(y)−f(x)

y−x .
Ex
f(x) = c

lim
h→0

c− c
h

= 0

f(x) = αx

lim
h→0

α(x+ h)− α(x)

h

lim
h→0

αh

h
= α

f(x) = x2

lim
h→0

(x+ h)2 − x2

h

lim
h→0

2xh+ h2

h
= lim
h→0

2x+ h = 2x
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f(x) =
√
x x > 0

lim
y→x

√
y −
√
x

y − x
= lim
y→x

√
y −
√
x

(
√
y +
√
x)(
√
y −
√
x)

Counter-Ex

f(x) = |x| at x = 0 and f(x) =

{√
x x ≥ 0

−
√
−x x ≤ 0

.

Ex

f(x) =

{
0 x ≤ 0

x2 x ≥ 0
is still differentiable.

Theorem 14.1. f diff at x =⇒ continuous at x

Proof.

lim
h→0

(f(x+ h)− f(x)) =

(
lim
h→0

h

)(
lim
h→0

f(x+ h)− f(x)

h

)
= 0 · f ′(x)

= 0

Theorem 14.2. Suppose f : [a, b]→ R, g : [a, b]→ R diff at x ∈ [a, b]. Then so
are f + g, f − g, f · g, f/g if g(x) 6= 0 and

1. (f + g)′ = f ′ + g′

2. (f − g)′ = f ′ − g′

3. (fg)′ = fg′ + f ′g

4.
(
f
g

)′
= gf ′−fg′

g2

Proof. .

1.

lim
h→0

f(x+ h) + g(x+ h)− f(x)− g(x)

h
= lim
h→0

f(x+ h)− f(x)

h
+lim
h→0

g(x+ h)− g(x)

h

(f + g)′ = f ′(x) + g′(x)

2. Similar
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3.

(fg)′(x) = lim
h→0

f(x+ h)g(x+ h)− f(x)g(x)

h

= lim
h→0

f(x+ h)g(x+ h)− f(x)g(x+ h) + f(x)g(x+ h)− f(x)g(x)

h

= lim
h→0

(
g(x+ h)

f(x+ h)− f(x)

h
+ f(x)

g(x+ h)− g(x)

h

)
= lim
h→0

g(x+ h) · lim
h→0

f(x+ h)− f(x)

h
+ lim
h→0

f(x) · lim
h→0

g(x+ h)− g(x)

h

= g(x) · f ′(x) + f(x) · g′(x)

4. First compute
(

1
g

)′
(

1

g

)′
(x) = lim

h→0

1
g(x+h) −

1
g(x)

h

= lim
h→0

g(x)− g(x+ h)

hg(x)g(x+ h)

= lim
h→0

g(x)− g(x+ h)

h
· lim
h→0

1

g(x)g(x+ h)

= −g′ · 1

g2

=
−g′

g2
(x)

Remark. Can assume g(x+ h) 6= 0 b/c ∃n of x with g(y) 6= 0, |x− y| < δ.
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15.1 Sequences of Functions

Let I ⊂ R be an interval. A sequence of functions is a function f : I×Z≥0 → R.
Denote f(x, n) by fn(x). Think of “list of functions” f0, f1, f2, . . . : I → R. We
may start at different indices.

Definition. A sequence of functions {fn} converges pointwise if ∀x ∈ I, limn→∞ fn(x) =
f(x).
-or-
∀x ∈ I, ∀ε > 0,∃N such that if n ≥ N, |fn(x)− f(x)| < ε.

Ex
I = [0, 1], fn(x) = xn
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Claim: fn converge pointwise to f(x) =

{
0 x 6= 1

1 x = 1

Check: if x = 1, fn(1) = 1n = 1
⇒ fn(1)→ f(1)∑∞

n=0 x
n converges when |x| < 1. Divergence test ⇒ limn→∞ xn = 0 if |x| < 1
⇒ fn(x)→ 0 = f(x) if x < 1

Definition. A sequence of functions {fn} converges uniformly to f if ∀ε >
0,∃N such that ∀n ≥ N, ∀x ∈ I, |fn(x)− f(x)| < ε.

Theorem 15.1. If {fn} is a sequence of continuous and fn → f uniformly,
then f is also continuous.

Proof. Need to show that if y ∈ I, then ∀ε > 0,∃δ > 0 | if |x−y| < δ and x ∈ I,
then |f(x)− f(y)| < ε. Given ε > 0,

– ∃N | ∀n ≥ N, ∀x ∈ I, |fn(x)− f(x)| < ε
3

Since fN is continuous, we know that

– ∃δ > 0 | if |x− y| < δ, then |fN (x)− fN (y)| < ε
3

Therefore, for this δ, we know |x− y| < δ ⇒

|f(x)− f(y)| = |f(x)− fN (x) + fN (x)− fN (y) + fN (y)− f(y)|
≤ |f(x)− fN (x)|+ |fN (x)− fN (y)|+ |fN (y)− f(y)|

<
ε

3
+
ε

3
+
ε

3
= ε

Remark. Uniform convergence =⇒ pointwise convergence

15.2 Series of Functions

Definition. A series of functions {fn} is the sequence of partial sums
∑n
i=0 fi.

Corollary 15.1.1. If {fn} are continuous and
∑∞
n=0 fn converges to f , then

f is continuous.

Proof. By linearity of continuous, each partial sum is continuous. Apply previ-
ous result.

Theorem 15.2 (Integration of series). If fn : [a, b] → R are continuous and
fn → f uniformly, and if gn(x) =

∫ x
a
fn(t)dt and g(x) =

∫ x
a
f(t)dt, then gn → g

uniformly. “you can exchange
∫

and uniform limits”
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Proof. Given ∀ε > 0, ∃N | ∀n ≥ N ⇒ |fn(x)− f(x)| < ε
2(b−a) . Then if n ≥ N,

|gn(x)− g(x)| =
∣∣∣∣∫ x

a

fn −
∫ x

a

f

∣∣∣∣
=

∣∣∣∣∫ x

a

(fn − f)

∣∣∣∣
≤
∫ x

a

|fn − f |

≤
∫ x

a

ε

2(b− a)

=
ε

2(b− a)
(x− a)

< ε

Corollary 15.2.1. If
∑∞
n=0 fn → f uniformly each fn : [a, b]→ R continuous,

then
∫ x
a
f =

∑∞
n=0

∫ x
a
fn. “you can integrate term by term”

Proof. Substitute hm =
∑∞
n=0 fn in above thm and note that∫ x

a

hm =

∫ x

a

m∑
n=0

fn

=

m∑
n=0

∫ x

a

fn

so ∫ x

a

f = lim
m→∞

∫ x

a

hm = lim
m→∞

m∑
n=0

∫ x

a

fn =

∞∑
n=0

∫ x

a

fn

15.3 Weierstrass M-test

Theorem 15.3 (Weierstrass M-test). If fn : I → R and ∀n, ∃Mn ∈ R such
that |fn(x)| ≤Mn and

∑∞
n=0Mn converges, then

∑∞
n=0 fn converges uniformly

(and absolutely) to a limit.

Ex

fn(x) =
sin(nx)

2n

Since sin is bounded, |fn(x)| ≤ 1
2n = Mn

⇒
∑∞
n=0

sin(nx)
2n is continuous (!).
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Proof. Since
∑∞
n=0Mn −M converges, ∀ε > 0,∃N | ∀n ≥ N ,

ε >

∣∣∣∣∣M −
n∑
i=1

Mi

∣∣∣∣∣
=

∣∣∣∣∣
∞∑

i=n+1

Mi

∣∣∣∣∣
≥

∞∑
i=n+1

|fi(x)| by comparison test

≥

∣∣∣∣∣
∞∑

i=n+1

fi(x)

∣∣∣∣∣ by result on absolute convergence

=

∣∣∣∣∣f(x)−
n∑
i=0

fi(x)

∣∣∣∣∣ where f(x) =

∞∑
i=0

fi(x)

⇒
n∑
i=0

fi → f uniformly

15.4 Power Series

Definition. If {an} is a sequence of reals, then the series
∑∞
n=0 anx

n is called
the power series corresponding to {an} centered at 0.

∑∞
n=0 an(x − c)n is the

same centered at c.

16 November 20, 2019

16.1 Power Series

Definition. The power series w/ coefficients {an} centered at c is the series∑∞
n=0 an(x− c)n.

Theorem 16.1. For any power series
∑∞
n=0 an(x − c)n, exactly one of the

following occurs:

a) t converges absolutely everywhere

b) It converges only at x = c (and it converges absolutely at x = c)

c) ∃R > 0 such that the series converges absolutely on (c−R, c+R) and
diverges if x < c−R or x > c+R

Remark. This R is called the radius of convergence. In 16.1.a say R =∞ and
in 16.1.b say R = 0.
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Lemma 16.2. Assume a power series centered at c converges at x. Then it
converges absolutely ∀y ∈ R such tht |y − c| < |x− c|.

Pf of Lemma. Assume x 6= c,
∑∞
n=0 an(x − c)n converges. Divergence Test ⇒

lim an(x− c)n = 0. ∃N | ∀n ≥ N, |an(x− c)n| < 1. Set z = |y−c|
|x−c| < 1 and z ≥ 0.

If n ≥ N, |an(y−c)n| = |an(x−c)n|zn < zn. This implies that
∑∞
n=0 |an(y−c)n|

converges by comparison to
∑∞
n=0 z

n.

Pf of 16.1. Clearly, a), b), c) are mutually exclusive. Assume a and b don’t
happen. Then c does. Let S = {x ∈ R |

∑∞
n=0 sn(x− c)n absolutely converges}.

Note:

- c ∈ S

- If x ∈ S and R = |x− c|, then lemma ⇒ x ∈ (c−R, c+R) ⊆ S

- If x /∈ S and R = |x − c|, then S ⊆ [c − R, c + R] by contrapositive of
lemma.

S is nonempty, and by “not a” and above note, S is bounded ⇒ supS exists.
Let R := supS − c.

“not b”⇒ ∃x ∈ S | x 6= c

⇒ supS > c

⇒ R > 0

If |x− c| > R, then ∃y with y − c ∈ (R, |x− c|)⇒ y > c+R = supS ⇒ y /∈ S.
And so by notes, x /∈ S. Hence S ⊆ [c−R, c+R]. On the other hand, consider a
point inside the interval such that |x− c| < R, then c+ |x− c| < c+R = supS.
Approximation property ⇒ ∃y ∈ S with c + |x − c| < y < c + R. Thus,
|x− c| < y − c. Lemma ⇒ x ∈ S ⇒ (c−R, c+R) ⊆ S.

Definition. 0! = 1. If n ∈ Z≥0, n! = (n− 1)! · n (Inductive def).

16.2 Power Series of sin and cos

Definition. Define the following two power series:

sin(x) :=

∞∑
n=1

(−1)n−1 x2n−1

(2n− 1)!

cos(x) :=

∞∑
n=1

(−1)n
x2n

(2n)!

Then,

sin(x) = x− x3

3!
+
x5

5!
− x7

7!
. . .

cos(x) = 1− x2

2!
+
x4

4!
− x6

6!
+ . . .

Note, sin(0) = 0, cos(0) = 1, sin(−x) = − sinx, cos(−x) = cos(x).
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16.3 Convergence

Proposition. Let
∑∞
n=0(an)(x − c)n be a power series with R > 0 and let

[a, b] ⊆ (c−R, c+R). Then the partial sums converge uniformly on [a, b].

Proof.
∑∞
n=0 an(x−c)n converges if x ∈ [a, b]. Divergence test⇒ limn→∞ an(x−

c)n = 0 if x ∈ [a, b]. ∃y with y ∈ (c − R, c + R). Then, |y − c| > |a − c| and
|y − c| > |b− c|. Let

D = max{|b− c|, |a− c|} z =
max{|b− c|, |a− c|}

|y − c|

We know that z < 1 and z ≥ 0. So, z = D
|y−c| . ∃N | ∀n ≥ N, |an(y − c)N | < 1.

We know this because an(y − c)n tends to 0.

|an(x− c)n| ≤ |an ·Dn| ≤ |an(y − c)n| · zn ≤ zn ∀n ≥ N

Let Mn = zn. Then M-test ⇒ uniform convergence.

Corollary 16.2.1.
∑∞
n=0 an(x − c)n is continuous on the Interval of Conver-

gence.

Proof. Use continuity of polynomials and the above Prop.

Remark. 16.2.1 implies sinx, cosx are continuous.

Theorem 16.3. Assume that f(x) =
∑∞
n=0 an(x− c)n (f is given by a power

series) on (c−R, c+R).

1.
∫ x
c
f =

∑∞
n=0

∫ x
c
an(t− c)ndt =

∑∞
n=0

an
n+1 (x− c)n+1

2. f is differentiable in (c − R, c + R) and f ′(x) =
∑∞
n=0

d
dx (an(x − c)n) =∑∞

n=1 nan(x− c)n−1

Proof. Do each separately.

1. f is continuous ⇒ f satisifes uniform convergence ⇒ prior results �

2. Let c = 0 for simplicity. Consider
∑∞
n=1 ann(x)n−1. We want to show

that this converges in (−R,R). Choose x with x ∈ (−R,R) and let h be
such that x + h ∈ (−R,R). f(x), f(x + h) are given by convergent series
so

f(h)− f(x+ h)

h
=

∞∑
n=0

an
(x+ h)n − xn

h

MVT applied to xn on (x, x+h)⇒ there is a point cn with cn ∈ (x, x+h).

(x+ h)n − xn

h
= ncn−1

n

f(x+ h)− f(x)

h
=
∑

anx
n−1
n ≥

∑
nanx

n−1

Thus,
∑
nanx

n−1 converges by comparison.
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17 November 25, 2019

17.1 Theorem from last class

Theorem 17.1. Let f(x) =
∑∞
n=0 anx

n in (−R,R). Then

1.
∑∞
n=1 nanx

n−1 converges in (−R,R)

2. f ′(x) exists and equals
∑∞
n=1 nanx

n−1 in (−R,R)

Proof of a. First assume 0 < x < R. Pick an h such that x < x+ h < R.

f(x+ h)− f(x)

h
=
∑

an
(x+ h)n − xn

h

MVT applied to xn in (x, x+h)⇒ ∃cn such that x < cn < x+h and (x+h)n−xn
h =

nanc
n−1
n .

∞∑
n=1

annc
n−1
n =

f(x+ h)− f(x)

h∑∞
n=1 annc

n−1
n converges ⇒

∑∞
n=1 annx

n−1 converges also since x < cn.

Similar if x < 0

Proof of b. Let g(x) =
∑∞
n=1 nanx

n−1. Thm about term by term integration∫ x

0

g(t)dt =

∞∑
n=1

anx
n + C

g continuous ⇒ f ′(x) exists and equals g(x).

Corollary 17.1.1. Convergent power series can be differentiated as many times
as you like (smooth).

Ex
sin′(x) = cos(x)

cos′(x) = sin(x)

This can be found by differentiating term by term.

Ex
(cosx)2 + (sinx)2 = 1

Proof. Let h(x) = (cosx)2 + (sinx)2.

h′(x) = 2 cosx(cos′ x) + 2 sinx(sin′ x)

= −2 cosx sinx+ 2 sinx cosx

= 0

h(0) = 12 + 02 = 1. Thus, h(x) = 1 ∀x.

42



17.2 Limits of Power Series

Ex Prop.

lim
x→0

sinx

x
= 1

Proof. sin x
x is given by a power series unless x = 0.

sinx

x
=

1

x

(
x− x3

3!
+ . . .

)
= 1− x2

3!
+
x4

5!
− . . .

This is a continuous function on (−∞,∞). So,

lim
x→0

(
1− x2

3!
+ . . .

)
= 1− 02

3!
+ . . . = 1

Therefore limx→0
sin x
x = 1 since they are equal when x 6= 0.

Remark. In general, one can “compute limits inside power series” at x = c
with this method.

17.3 Differentiation of Power Series

Say we have a power series

f(x) =

∞∑
n=0

an(x− c)n =⇒ f(c) = a0

f ′(x) =

∞∑
n=1

ann(x− c)n−1 =⇒ f ′(c) = a1

f ′′(x) =

∞∑
n=2

ann(n− 1)(x− c)n−2 =⇒ f ′′(c) = 2an

...

f (k)(c) = k!ak

ak =
f (k)(c)

k!
Therefore,

f(x) =

∞∑
k=0

f (k)(c)

k!
(x− c)k

Corollary 17.1.2. Uniqueness of power series:
If f(x) =

∑
an(x− c)n =

∑
bn(x− c)n, then an = bn.

Proof. They are both f(n)(c)
n! .
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17.4 Taylor Series

Definition. A Taylor Series is a power series you get from some f via an =
f(n)(c)
n! .

Ex What is the Taylor Series of ex at c = 0?

an =
exp(n)(0)

n!

e0 = 1

exp′ x|x=0 = expx|x = 0 = 1

exp′′ x|x = 0 = expx|x=0 = 1

So, Taylor Series of expx is
∑∞
n=0

xn

n! .

Definition. A function on some interval I is analytic if ∀c ∈ I, ∃R > 0 such
that f is represented by a power series in (c−R, c+R). If it is, the power series
is the Taylor series.

Proposition. Sums, differences, products, quotients if dem 6= 0, compositions
of smooth/analytic functions are smooth/analytic respectively.

Proof. Only difficult part is analytic. We’ll skip.

Definition. If f : I → R is smooth at c, its Taylor Series at c is

∞∑
n=0

f (n)(c)

n!
(x− c)

17.5 Problems for Smooth Functions

1. Taylor Series may not converge for x 6= c

2. Even if Taylor Series converges, it may not converge back to f(x)

Ex

f(x) =

{
e
−1

x2 if x 6= 0

0 if x = 0
HW ⇒ f(x) is smooth and f (n)(0) = 0 ∀n

Taylor Series is
∑∞
n=0

0
n!x

n = 0 so f(x) is not analytic.

f (0) = f by definition

Is expx analytic? To solve this, use
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Theorem 17.2 (Taylor’s Theorem). Let f be smooth on (c−R, c+R). Then,
∀N ≥ 0, we have

f(x) =

N∑
n=0

f (n)(c)

n!
(x− c)n + EN (x)

where

EN (x) =
1

N !

∫ x

c

(x− t)Nf (N+1)(t)dt

So Taylor Series of f converges at x⇐⇒ EN (x)→ 0 as N →∞.

Proof. By Induction on N

N = 0 is the statement

f(x) = f(c) +

∫ x

c

f ′(t)dt

i.e. the FTC

Assume known for N . Then,

EN+1(x) = EN (x)− f (N+1)(c)

(N + 1)!
(x− c)N+1

By Induction,

EN+1(x) =
1

N !

∫ x

c

(x− t)Nf (N+1)(t)dt− f (N+1)(c)

N !

∫ x

c

(x− t)Ndt

=
1

N !

∫ x

c

(x− t)N
(
f (N+1)(t)− f (N+1)(c)

)
dt

Let u = f (N+1)(t)− f (N+1)(c) and dv = (x− t)N . By IBP

EN+1(x) = u(t)v(t)|t=xt=c −
1

N !

∫ x

c

vdu

= 0− 1

N !

∫ x

c

−(x− t)N+1

N + 1
f (N+2)(t)dt

=
1

(N + 1)!

∫ x

c

(x− t)N+1f (N+2)(t)dt

18 December 2, 2019

18.1 Radius of Convergence

Question: is exp(x) analytic?
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Recall: f analytic on I means ∀c ∈ T, ∃R > 0 such that the Taylor Series
at c gives back f on (c−R, c+R).

Proposition. Let f(x) =
∑∞
n=0 an(x − c)n have radius of convergence R. If

y ∈ (c − R, c + R), then the Taylor Series of f with center y has radius of
convergence at least min(|y − c+R|, |y − c−R|).

Corollary 18.0.1. f is analytic on (c−R, c+R).

Note: We know

(a+ b)n =

n∑
k=0

(
n

k

)
an−k · bk

Proof.

f(x) =

∞∑
n=0

an(x− c)n (1)

=

∞∑
n=0

an(x− y + y − c)n (2)

=

∞∑
n=0

an

n∑
k=0

(
n

k

)
(x− y)n−k(y − c)k (3)

=

∞∑
k=0

(( ∞∑
n=k

an

(
n

k

)
(x− y)n−k

)
(y − c)k

)
(4)

For (1) − (3), f(x) converges absolutely when −R < x − c < R. Thus, when
absolute value signs are added, the function still converges.

∞∑
n=0

∣∣∣∣∣an
n∑
k=0

(
n

k

)
(x− y)n−k(y − c)k

∣∣∣∣∣ ≤
∞∑
n=0

|an|
n∑
k=0

(
n

k

)
|x− y|n−k|y − c|k

=

∞∑
n=0

|an||z − c|n where z = |x− y|+ |y − c|+ c

∑∞
n=0 |an||z − c|n converges when c−R < z < c+R.

⇒ (3) converges absolutely when c−R < z < c+R so we can rearrange
this sum in that interval. The inequality holds if −R < y − c < R
and x is within min(|y − c+R|, |y − c−R|) of y.

18.2 Exp Analytic

Ex exp(x) is analytic

T.S. at 0 =
∞∑
n=0

1

n!
xn
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By Taylor’s theorem, to show this converges back to exp(x), we need En(x)→ 0.

EN (x) =
1

N !

∫ x

0

(x− t)Netdt

(x− t)N ≤ xN and et ≤ ex. Thus,

EN (x) ≤ 1

N !
xNexx→ 0 asN →∞(fixed x)

So Taylor Series at 0 = exp(x) ∀x ∈ R. Proposition ⇒ exp is analytic!

18.3 Other Examples
∞∑
n=0

xn =
1

1− x
when |x| < 1

Plug in x2 for x
∞∑
n=0

x2n =
1

1− x2
when |x| < 1

Plug in −x for x
∞∑
n=0

(−1)nxn =
1

1 + x
when |x| < 1

Integrate both sides:

∞∑
n=0

(−1)nxn+1

n+ 1
= log(1 + x) when |x| < 1

∞∑
n=1

(−1)n+1xn

n

Ex

1

1 + x2
=

∞∑
n=0

(−1)nx2n |x| < 1

We know this is smooth on R!
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18.4 Fun Stuff

Theorem 18.1 (fun). e /∈ Q

Proof. We know 1
e = e−1 =

∑∞
n=0

(−1)n

n! . It suffices ot show 1
e /∈ Q. Let Sn be

the nth partial sum. Terms are alternating and decreasing in abs. value.

At each step, nth error < nth term

0 <

∣∣∣∣1e − sn−1

∣∣∣∣ < 1

n!

Odd Terms:

0 <
1

e
− s2n−1 <

1

(2n)!

0 < (2n− 1)!

(
1

e
− s2n−1

)
<

1

2n
≤ 1n

Suppose 1
e = p

q p, q ∈ R. Pick n ≥ q+1
2 . So, (2n − 1)! 1

e is an integer. Also,

(2n− 1)s2n−1 is an integer by the power series formula.
⇒ (2n− 1)!

(
1
e − s2n−1

)
is an integer strictly between 0 and 1

2 .
Contradiction!

19 December 4, 2019

19.1 Final Exam

• Review Sessions (Sometime)

• Monday the 16th
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19.2 Linear Algebra

Given functions f, g and constants c, d, you can say

(cf + dg)′ = cf ′ + dg′ (Linearity)∫
(cf + dg) = c

∫
f + d

∫
g

lim
x→c

(cf(x) + dg(x)) = c lim
x→c

f(x) + d lim
x→c

g(x)

lim
n→∞

(can + dbn) = c lim
n→∞

an + d lim
n→∞

bn

19.3 Fields

Definition. A field is a set F together with two binary operations +, • and two
elements 0, 1 with 0 6= 1 such that:

1. ∀x, y ∈ F, x+ y = y + x and x · y = y · x (Commutativity)

2. ∀x, y, z, x+ (y+ z) = (x+ y) + z and x · (y · z) = (x · y) · z (Associativity)

3. ∀x, y, z, x · (y + z) = x · y + x · z (Distributivity)

4. ∀x, x+ 0 = x and x · 1 = x

5. ∀x, ∃y such that x+ y = 0. We call this y “−x”.

6. ∀x 6= 0,∃y such that x · y = 1 (call this y “ 1
x” or “x−1”)

Ex Q,R,C (complex numbers - soon)
Fp = {0, 1, 2, . . . , p−1} with “modular arithmetic”. p = a prime number.

Ex A thing that seems bad
Let F be a field. Define the following.

2 = 1 + 1

3 = 2 + 1

4 = 3 + 1

...

Then it may happen that p = 0 for p a prime. Eg. Fp. So we can’t always
divide by n, n a natural number.
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19.4 Vector Spaces

Definition. Let F be a field. A vector space over F is a set V together with
two operations:

+ : V × V → V (Addition)

• : F × V → V (Scalar Multiplication)

and an element 0 ∈ V , such that

1. ∀x, y x+ y = y + x

2. ∀x, y, z x+ (y + z) = (x+ y) + z
∀a, b ∈ F a · (b · x) = (a · b) · x

3. c ∈ F, x, y ∈ V c · (x+ y) = c · x+ c · y
c, d ∈ F, x ∈ V (c+ d) · x = c · x+ d · x

4. ∀x, x+ 0 = x and 1 · x = x

5. ∀x, ∃y | x+ y = 0

Remark. Call elements of V “vectors” and call elements of F “scalars”. For
some reason, Apostol calls vector spaces “linear spaces”.

Proposition (Easy facts about vector spaces). Let F be a field, V a vector
space over F .

1. ∀x ∈ V, (−1) · x is the unique y such that x+ y = 0. (call it “−x”)

2. ∀x ∈ V, 0F · x = 0V .
∀c ∈ F, c · 0V = 0V .

3. ∀x ∈ F,∀x ∈ V, (−c) · x = c · (−x) = −c · x.

4. If c · x, then c = 0 or x = 0.
If c · x = c · y, then c = 0 or x = y.
If c · x = d · x, then c = d or x = 0.

Proof of 2. Assuming 1,

1 + (−1) = 0

(1 + (−1)) · x = 0 · x
1 · x+ (−1) · x = 0 · x Distributivity

x+ (−1) · x = 0 · x Identity of 1

0 = 0 · x
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19.5 Examples

Given F a field, let

Fn = {cx1, cx2, cx3, . . . , cxn | x1, x2, . . . , xn ∈ F}
= {functions [n]→ F} (formally)

Let 0Fn = (0, 0, . . . , 0).

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn)

c · (x1, . . . xn) = (c · x1, c · x2, . . . , c · xn)

Check: this satisfies all axioms. E.g. Associativity of +:

((x1, . . . , xn) + (y1, . . . , yn)) + (z1, . . . , zn) = (x1 + y1, . . . , xn + yn) + (z1, . . . , zn)

= ((x1 + y1) + z1, . . . , (xn + yn) + zn)

= (x1 + (y1 + z1), . . . , xn + (yn + zn))

= (x1, . . . , xn) + (y1 + z1, . . . , yn + zn)

= (x1, . . . , xn) + ((y1, . . . , yn) + (z1, . . . , zn))X

19.6 Notation

If x = (x1, . . . , xn) ∈ Fn, then we call xi ∈ F the ith component of x. So two
vectors are equal ⇐⇒ all components are equal.

Ex Let F 0 = {0}. This is a vector space.

Ex F 1 “is” F as a set. F 1 “forgets indentity” 1.

19.7 Visualization

Take F = R. R2 = a plane and R3 = 3 - dim’l space.

x

y

x+ y

Ex Let F be a field and S a set. Denote the set of functions S → F by F(S, F ).
0 is the zero function.

(f + g)(s) = f(s) + g(s)

(cf)(S) = c · f(s)
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e.g. if F = R, S = R. F(R,R) = space of all real valued functions on R. More
generally, take set S and vector space V (over F ). F(S, V ) is a vector space.
e.g. functions R→ R2.

20 December 9, 2019

20.1 Final Exam Stuff

Review Sessions

1. Tomorrow 12/10 5-7 room 520

2. TBD

Final Exam
Exactly one week in usual place. Warner will also hold office hours sometime
TBD on Friday. Practice problems will be posted.

20.2 Linear Alg Cont.

Functions are to sets as linear maps are to vector spaces.
Ex

• Rn

• F(S, F ) S set, F field

• F(S, V ) V vector space

Ex Check distributivity axiom for F(S, V ).

(c(f + g))(s) = c · (f + g)(s) by defn of scalar multiplication

= c · (f(s) + g(s)) by defn of vector addition

= cf(s) + cg(s) by distributivity in V

= (c · f)(s) + (c · g)(s)

= (c · f + c · g)(s)

20.3 Subspaces

Definition. Let V be a vector space/F . A nonempty subset W ⊆ V is a
subspace if x, y ∈W ⇒ x+ y ∈W and x ∈W, c ∈ F ⇒ cx ∈W .

Observation: If W ⊆ V is a subspace, then it is a vector space itself (with
induced +, •).

Proof. +, • well defined by the defn. All identities follow from those in V . Let
w ∈W . Then −w ∈W and w + (−w) ∈W ⇒ Ov ∈W .

Ex
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• W = {0}

• W = V

• Any line through the origin in R2

• NOT any line not through origin in R2

• A plane going through the origin in R2

Ex
V vector space, v ∈ V with v 6= 0. W = {cv | c ∈ F} is a subspace.

Ex

• V = F(R,R) ⊃ {bounded functions} and F(R,R) ⊃ {continuous functions}

• V = F([a, b],R) ⊃ {bounded functs} ⊃ {integrable functs} ⊃ {continuoud functs} ⊃
{differentiable functs} ⊃ {smooth functs} ⊃ {analytic functs} ⊃ {polynomials} ⊃
{constant functions}.

Proposition. Let V be a vector space. W1 ⊆ V,W2 ⊆ V subspaces. Then
W1 ∩W2 is a subspace.

Proof. If x, y ∈ W1 ∩W2, then x, y ∈ W1 and x, y ∈ W2 so x + y ∈ W1 and
x+ y ∈ W2 so x+ y ∈ W1 ∩W2. If x ∈ W1 ∩W2 and c ∈ F , then x ∈ W1 and
x ∈W2 so cx ∈W1 and cx ∈W2 so cx ∈W1 ∩W2.

Remark. Unions of subspaces are generally not subspaces.

Definition. If V,W are vector spaces over F , then a linear map V → W is a
function T : V →W such that T (v1 +v2) = T (v1)+T (v2) and T (cv1) = cT (v1).

Ex derivatve,
∫

, limx→c, limn→∞

Ex

• idv: V → V is linear

• If T : U → V is linear and W is a subspace of U , then the restriction
T |W : W → V is linear.

• If W ⊆ U is a subspace, idU|W : W → U is linear (inclusion function).

Definition. For x1, . . . , xn ∈ U,U v.s./F and c1, . . . , cn ∈ F , the linear combination
of xi with coefficients ci is the vector

∑n
i=1 cixi.

Proposition. T : U → V is linear ⇐⇒ ∀x1, . . . xn ∈ U,∀c1, . . . , cn ∈ F ,

T

(
n∑
i=1

cixi

)
=

n∑
i=1

ciT (xi)

Remark. “linear = preserves linear combination”

“Proof”. Induct on n.
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20.4 Kernal and Image

Definition. Suppose T : U → V is linear. Denote T−1({0}) by kerT “kernal
of T”. Denote T (U) by imT “image of T”.

Proposition. kerT is a subspace of U . imT is a subspace of V .

Proof. Just have to check closure under +, •.

U1, U2 ∈ kerT ⇒ T (U1) = T (U2) = 0

V T (U1 + U2) = T (U1) + T (U2)

⇒ U1 + U2 ∈ kerT = 0

U ∈ kerT, c ∈ F, T (u) = 0.

T (cu) = cT (u) = c · 0 = 0⇒ cu ∈ kerT

⇒ kerT is a subspace

v1, v2 ∈ imT ⇒ ∃u1, u2 | T (u1) = v1 and T (u2) = v2.

T (u1 + u2) = T (u1) + T (u2) = v1 + v2 ⇒ v1 + v2 ∈ imT

v ∈ imT, c ∈ F ⇒ ∃u | T (u) = v and T (cu) = cT (u) = cv ⇒ cv ∈ imT .

Ex
F = R, V = {differentiable functions on R}, D : V → F(R,R), D(f) = f ′.
What is kerD? Calculus ⇒ kerD = {constant functions}. imD =??. By FTC
we do know that imD contains all continuous functions.

Proposition. kerT = {0} ⇔ T is injective

Proof. HW next year (!) *as in next semester*

Note
imT = V ⇐⇒ T is surjective

Definition. An isomorphism T : V → V is a linear map that is bijective.

21 Final Review: December 10, 2019

21.1 Notes from HW 12

“it was really hard”.
Questions 9 - 10
The goal is to build a smooth function f such that f − g near c, f − h near d,
whose g, h are smooth.

f = Φ(x− c)g(x) + Φ(x− d)h(x)
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such that

Φ(x) =

{
1 near 0

0 “away from 0”

f(c) = Φ(0) · g(c) + Φ(c− d)h(c)

= 1 · g(c) + 0 · h(c)

= g(c)

Another Question
fn uniformly converges to f . Want to show fn are integrable ⇒ f is also
integrable.

Proof. From previous homework, we only need to prove ∀ε > 0,∃ two step func-
tions s(x), t(x) such that s(x) ≥ f(x) ≥ t(x) and

∫
(s(x)− t(x))dx < ε.

Mistake 1: {sn} to be a sequence of upper step functions of {fn}.

sn(x) =

{
1 x ∈

[
2k−1
n , 2k

n

)
0 x ∈

[
2k
n ,

2k+1
n

) As n→∞, s is no longer a step function.

∀ε > 0,∃N,n ≥ N | |fn(x) − f(x)| < ε. Let step functions sN , tN | sN ≥
fN ≥ tN and

∫
sN − tN < ε. Claim sN + ε is an upper step function for f .

sN + ε ≥ fN + ε > f . tN − ε is a lower step function for f . Let s = sN + ε and
t = tN − ε. Then,∫

(s− t)dx <
∫

(sN − tN )dx+

∫ b

a

(2ε)dx

= ε+ 2(b− a)ε = (2(b− a) + 1)ε

The following should be the exam solution.
fn = f, ∃N, ∀n ≥ N, ∀x|fn(x) − f(x)| < ε

2(b−a)+1 . tN , sN to be step functions

for fN (x) such that
∫ b
a

(s(x) − t(x))dx < ε
2(b−a)+1 . Claim SN + ε

2(b−a)+1 tN −
ε

2(b−a)+1 .
∫

(s− t)dx < ε.

21.2 HW 9

Theorem 21.1. |f | is differentiable ⇒ f is differentiable. Hint: You only need
to consider x such that f(x) = 0. What if we consider x0 | f(x0) > 0.

Proof. Mistake: Consider f(x) > 0. |f |(x) = f(x) ⇒ f ′(x) exists and equals

|f |′(x). In def of f ′, f ′ = limh→0
f(x+h)−f(x)

h . f(x) = |f |(x). Why f(x + h) =
|f |(x+ h).
Solution
x0 such that f(x0) > 0. Goal: ∃δ, x ∈ (x0 − δ, x0 + δ). Know: ∃δ, f(x) > 0.

|f(x)− f(x0)| < f(x)
2 ∀x ∈ (x0 − δ, x0 + δ) ⇒ f(x)− f(x0) > − f(x0)

2 ⇒ f(x) >
f(x0)

2 > 0.
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Theorem 21.2. f is continuous, f(x0) > 0,∃(a, b) | x0 ∈ (a, b) and f(x) =
0 ∀x ∈ (a, b).

21.3 Questions

1. f(x), f(x) are analytic. f(x) = g(x) ∈ (a, b)⇒ f(x) = g(x) everywhere.

Proof. c = sup{x | f(x) = g(x)}.h = f − g analytic. Taylor Expansion
at c. Taylor expansion of h has infinite zeros near c. Claim series is
constantly zero at c. f − g = 0 for c+ ε⇒ contradiction.

2. f : R → R twice diff. f(0) = 0, f(1) = 1, f(0) = f ′(1) = 0. x ∈
[0, 1], f ′′(x) ≥ 2.

Answer.
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